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a b s t r a c t

Alzheimer’s disease (AD) is an incurable neurodegenerative disease. Mild cognitive impairment (MCI)
is often considered a critical time window for predicting early conversion to Alzheimer’s disease (AD),
with approximately 80% of amnestic MCI patients developing AD within 6 years. MCI can be further
categorized into two stages (i.e., early MCI (EMCI) and late MCI (LMCI)). To identify EMCI effectively
and understand how it changes brain function, the brain functional connectivity network (BFCN) has
been widely used. However, the conventional methods mainly focused on detection from a single
time-point data, which could not discover the changes during the disease progression without using
multi-time points data. Therefore, in this work, we carry out a longitudinal study based on multi-time
points data to detect EMCI and validate them on two public datasets. Specifically, we first construct
a similarity-constrained group network (SGN) from the resting state functional magnetic resonance
imaging (rs-fMRI) data at different time-points, and then use a stacked bidirectional long short term
memory (SBi-LSTM) network to extract features for longitudinal analysis. Also, we use a self-attention
mechanism to leverage high-level features to further improve the detection accuracy. Evaluated on the
public Alzheimer’s Disease Neuroimaging Initiative Phase II and III (ADNI-2 and ADNI-3) databases, the
proposed method outperforms several state-of-the-art methods.
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1. Introduction

Alzheimer’s disease (AD) is one of the most severe dementia
among elderlies. With the deepening of global aging, the number
of AD patients is also growing. According to the latest statistics,
the current total number of AD patients is about 50 million, which
is expected to increase to about 152 million by 2050 and will
cause a lot of burden to the economy and community [1]. As
an aging disease, AD is an incurable disease [2] and its early
stage is mild cognitive impairment (MCI). MCI contains early MCI
(EMCI) and late MCI (LMCI), and its detection has been attracting
wide attention [1,3]. If we can detect EMCI early and perform
timely treatment and intervention, we can effectively delay the
AD occurrence [4].

https://doi.org/10.1016/j.knosys.2022.109466
http://www.elsevier.com/locate/knosys
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Fig. 1. Examples of brain regions’ changes along time and different stages of
disease.

With the further development of MCI, both structure and
unction of the brain region changes to a certain extent, but in
he early stage of MCI, the brain structure has less change than
rain function and it is hard to detect the slight changes of brain
tructures [5]. Moreover, the resting state functional magnetic
esonance imaging (rs-fMRI) has been widely used in MCI de-
ection [4,6]. With the development of MCI, the corresponding
rain functions of relevant brain regions will also change [5].
herefore, the longitudinal study of MCI can help us further
dentify the corresponding brain change as well as improve the
ccuracy of disease diagnosis [7]. In order to better represent
he physiological function changes during different time points,
e use BrainPainter [8] to further demonstrate the changes in
ig. 1, which shows the corresponding brain regions changes via
he different stages of MCI and normal control (NC) [9]. We can
ind that the EMCI and NC only have a slight difference, which is
ifficult to detect them [10].
To address the above problems, establishing a new brain func-

ional connectivity network (BFCN) among brain regions to detect
he EMCI disease region is quite desirable. Recently, many re-
earchers proposed various methods to construct an effective
FCN for MCI detection [11]. For example, the Pearson’s corre-
ation (PC) brain network is constructed to solve the problem of
earning the relationship of different brain regions [12]. However,
he BFCN of PC has lots of redundancy, which is undesirable for
isease diagnosis. Hence, sparse representation (SR) is used to
educe the numerous useless features in BFCN for performance
mprovement [13]. However, these methods only consider the
nternal regional relationship, which fails to consider the external
rain regional relationship of subjects. To improve it, the group-
onstrained sparse (GCS) brain network has been used [14]. How-
ver, the GCS method does not consider the similarity of brain
egions during the BFCN construction. Also, the recent work has
hown that multi-center data becomes more appealing in dis-
ase detection [15], because various scanning time points and
arameters have been used on multiple centers and thus the
ombined data is more challenging to validate the generalization
bility of the model. Hence, an effective method to construct the
ulti-center BFCN is quite desirable. For this reason, we devise
similarity-constrained group sparse network (SGN) for multi-
enter BFCN construction, which can learn the similarity among
eatures and reduce the useless features simultaneously.

Apart from BFCN construction, discriminative feature learning
lays an essential role in detecting EMCI. In the recent years, with
he continuous development of artificial intelligence, various in-
elligent diagnosis methods are used to detect brain disease [16].
ecent work shows that constructing the effective BFCN and
eature extraction/selection methods can improve the detection
esults via support vector machine (SVM) [17,18]. However, these
2

feature extraction/selection methods are based on traditional ma-
chine learning methods [17], which cannot learn deep features
for disease detection. At present, some deep learning method has
achieved good results in the diagnosis of brain disease [19–21].
For example, Bakar et al. [22] proposed to use multilayer per-
ceptrons (MLP) neural network for the detection of Parkinson’s
disease. Except MLP, long short term memory (LSTM) has also
widely used for disease detection. For example, Hong et al. [23]
used LSTM to learn the time-related biomarkers associated with
disease status to predict the stages of AD. Wang et al. [24]
proposed to use two layer stacked bidirectional LSTM (SBi-LSTM)
for brain state recognition. However, the above disease detection
methods mainly use magnetic resonance imaging (MRI) dataset,
while the rs-fMRI has been proved more effective for detecting
EMCI [4]. An more effective deep learning method is still needed
for EMCI detection via rs-fMRI data. Therefore, we explore the
SBi-LSTM to extract feature from BFCN for longitudinal study of
EMCI.

Recently, various attention mechanisms have been proposed
to learn the discriminative features for detecting disease and seg-
menting lesion areas [25,26]. For example, Song et al. proposed
a novel attention guided method to improve their performance
for action recognition [27]. Zhao et al. proposed to use spatial-
channel attention based on U-net to find deeper features for gland
segmentation and achieved promising result [28]. But the above
attention mechanisms do not have similarity with the original
feature, which has been proved important for classification [29].
Recently, the self-attention has achieved quite promising results
on word detection [30] since it has the powerful ability to find
similar features during feature learning. Therefore, we propose to
use self-attention mechanism for EMCI detection.

Based on the above analysis, the BFCN constructed by SGN
is integrated with self-attention via SBi-LSTM (SSBi-LSTM) to
automatically detect and analyze EMCI longitudinally, which con-
sists of the following three steps. Firstly, the longitudinal data
is used to construct BFCN by our SGN method. Then, the brain
network feature is sent to the SBi-LSTM for feature extraction.
Finally, we propose to use self-attention to find more effective
features during the feature learning. Experimental results on the
public Alzheimer’s Disease Neuroimaging Initiative Phase II and III
(ADNI-2 and ADNI-3) (http://adni.loni.usc.edu/) databases show
the promising performance for analyzing and detecting EMCI lon-
gitudinally. The main contributions of this work are summarized
as below:

(1) We construct a similarity-constrained group brain network
to learn representative features effectively.

(2) We design a SBi-LSTM framework to utilize the longitudi-
nal information for EMCI detection.

(3) We explore a self-attention mechanism to find the most
discriminative features to improve the detection performance.

2. Related work

2.1. BFCN construction

Many studies in the literature focused on constructing an
effective BFCN for brain disease detection. To reduce the noisy
connection as well as the network complexity, previous methods
focused on constructing a sparse brain network based on the
kNN method (Zhang et al. [31]). Specifically, every node con-
nects a subset of nodes (i.e., its k nearest neighbors, kNN graph
for short) in the sparse brain networks. Moreover, the nearest
neighbor is obtained based on the similarity measurement. For
example, Yang et al. [32] proposed to first calculate the mean
BFCN matrix of all training subjects within the same time-series
block to construct a kNN graph. Yao et al. [33] proposed to

http://adni.loni.usc.edu/


B. Lei, Y. Zhang, D. Liu et al. Knowledge-Based Systems 254 (2022) 109466

f
a
s
m
p
s
p
v
t
f
f
t
d
m
p
l
n
w
f
f
t
u
p
c

2

t
o
e
i
i
a
d
(
a
d
s
M
v
o
n
c
i
l
n
l
A
c

f
l
o

Fig. 2. Flowchart of the proposed SSBi-LSTM method for MCI detection from two time points rs-fMRI data.
irst calculate PC among the nodes within the individual brain
nd then to connect each brain region with 8 neighbors for all
ubjects. In addition, Bi et al. [34] designed two deep learning
ethods for functional brain network classification, and also im-
lemented an Extreme Learning Machine (ELM) augmentation
tructure to further improve the learning ability. Zhang et al. [35]
roposed a multi-GCN based GAN (MGCN-GAN) to infer indi-
idual SC based on corresponding FC by automatically learning
he complex associations between individual brain structural and
unctional networks. Gan et al. [36] proposed a framework for
unctional connectivity network (FCN) analysis, which conducted
he brain disease diagnosis on the rs-fMRI data. Zhang et al. [37]
eveloped a graph-based deep neural network to simultaneously
odel brain structure and function in MCI. Huang et al. [15]
roposed to add both PC and modularity structure into sparse
ow-rank brain network (SLR) to get the PC-related SLR brain
etwork features. Another fused sparse network (FSN) method
as recommended by Yang et al. [5] to analyze the longitudinal

eatures to detect MCI stages. However, these methods mainly
ocus on getting sparse brain network features but fail to consider
he similarity characteristics while constructing BFCN, which are
ndesirable for improving detection performance. Therefore, we
ropose a similarity-constrained sparse brain network for BFCN
onstruction.

.2. Deep learning methods for longitudinal study

Most existing MCI detection methods are based on conven-
ional machine learning, while EMCI detection from rs-fMRI data
r using deep learning methods are quite rare. For example, Liu
t al. proposed to use MRI data and the subjects’ demographic
nformation to establish the deep multi-task multi-channel learn-
ng model for clinical score regression [38]. Feng et al. proposed
new multi-task learning method to effectively detect brain
isease via MRI and positron emission computed tomography
PET) data [39], where a 3D CNN is proposed to extract features
nd a specific SBi-LSTM network is designed to fuse data from
ifferent modalities. However, this method only focuses on brain
tructure changes caused by AD. Islam et al. [40] presented a
CI diagnosis method to learn the spatial–temporal dependency
ia rs-fMRI time signal directly and achieved good results based
n LSTM. However, they may miss the effect of BFCN. Another
ovel method uses weight correlation kernel model for effectively
onstructing a dynamic BFCN from rs-fMRI, which obtained quite
mpressive results [41]. However, this method does not consider
ongitudinal study. Regarding the longitudinal study on AD, a
ovel deep polynomial network (DPN) is proposed to learn the
ongitudinal features for predicting the future development of
D and get good results [7]. Another work used parameter-free
entralized multi-task learning to detect EMCI and LMCI [5].
Both constructing a meaningful BFCN and building a powerful

eature learning model are beneficial to detect the brain regions
ongitudinally. Therefore, SBi-LSTM is utilized in this paper to

btain rich longitudinal information for EMCI detection.

3

3. Methodology

Fig. 2 shows the architecture of the proposed EMCI longitudi-
nal analysis method using SSBi-LSTM model. Specifically, we first
construct a SGN network to represent the longitudinal data of
different centers. Then we combine the two center SGN features
and feed them into the SBi-LSTM module to extract features.
Thirdly, we add a self-attention mechanism to identify the most
representative features. Finally, we use a Softmax function to
detect EMCI.

3.1. Subjects and data acquisition

The datasets collected in this work are all from public ADNI-2
and ADNI-3 datasets, with 102 subjects in ADNI-2 and 51 subjects
in ADNI-3 dataset. In ADNI-2 dataset, there are 30 LMCI, 39 EMCI,
and 33 NC. In ADNI-3 dataset, there are 16 LMCI, 25 EMCI, and 10
NC. All subjects have two time-point (baseline and year1) rs-fMRI
data with different scan parameters. Our multi-time point data
is acquired with a 3.0 T Siemens MRI scanner. The rs-fMRI data
collection uses a gradient echo planar imaging (EPI) sequence
with specific parameters as follows: imaging matrix = 64 × 64,
field of view (FOV) = 192 × 192 mm2, voxel thickness = 3.3 mm,
flip angle = 80◦, time repetition (TR) = 3000 ms, echo time (TE)
= 30 ms. Specifically, we collect data at 140 time points in ADNI-
2, and gather data at 197 time points in ADNI-3. During the data
collection, ADNI-2 subjects are asked to close their eyes, while
ADNI-3 subjects are asked to open their eyes.

3.2. Data pre-processing

We follow the same preprocess parameters used in [5]. In
this study, the collected rs-fMRI data is pre-processed by the
Statistical Parametric Mapping toolbox (SPM12) and the Data
Processing Assistant for Resting-State fMRI (DPARSFA) with a
standardized data pre-processing method. Before pre-processing,
we remove the first 10 time points of each subject’s rs-fMRI data,
which can make the magnetization equal. We utilize a staggered
sequence of slice correction of the rest 170 time points. Also, the
echo planar scan is utilized to make sure that each slice’ data
is corresponding to the unanimous point in time. We perform
the following preprocessing steps: First, we set the interpolation
time point to half TR, to minimize the relative error of each
TR. Then, we perform time registration and spatial normalization
after removing the head motion to reduce the influence of scan
differences. The high pass filter parameters are set to [0.01, 0.08]
to reduce low frequency noise. Finally, we divide the brain into 90
regions of interests (ROIs) by aligning to the anatomical automatic

labeling (AAL) template [42].



B. Lei, Y. Zhang, D. Liu et al. Knowledge-Based Systems 254 (2022) 109466

3

B
w
b
a
A
a
c[
a
p
e
c
G
i
s
i
e
o

f

w
r
w
a

g

w
u
o
f
Z
l
t
b
f
t
d
g

b

w

Z
b
T
o

y

.3. Similarity-constrained group sparse network

After pre-processing, it is essential to establish an effective
FCN to improve the diagnosis performance [15,43]. Therefore,
e propose a SGN model to construct BFCN. In this section,
old uppercase letters, bold lowercase letters, and italic letters
re used to represent matrices, vectors, and scalars, respectively.
ssuming that we have the input data A from M subjects, and
brain is separated into P ROIs by AAL template so that we

an derive A =
[
a1, . . . ap, . . . aP

]
∈ RP×M , where am

p =

am1p, a
m
2p, . . . , a

M
Ep

]
is a length E vector that denotes the regional

verage time series of the blood oxygen-dependent level in the
th ROI of subject k. We denote the signal matrix of all ROIs
xcept akp as Ak

p, so that Ak
p =

[
ak1, . . . a

k
p−1, . . . a

k
p+1, . . . a

k
P

]
is the

olumn vector of weighted regression coefficients. Although the
CS network can guarantee both group constraint and sparseness,
t may also ignore the similarity parameters among different
ubjects, and thus obtain less discriminative features. To solve
t, we explore a model to learn the functional brain network of
ach subject via similarity-constrained group sparse learning. The
bjective function is formulated as

(Wp) = min
Wp

1
2

M∑
m=1

∥amp − Am
p w

m
p ∥

2
2 + Rg (Wp)+ Rs(Wp), (1)

where Rg (Wp) and Rs(Wp) represent the group- and similarity-
constraint, respectively, which are denoted as:

Rg (Wp) = λ1
Wp


2,1 = λ1

P−1∑
d=1

wd
p


2
, (2)

Rs(Wp) = λ2

M−1∑
m=1

wm
p −wm+1

p


1
, (3)

where λ1, λ2 are two weighting parameters, wd
p is the dth row

vector of Wp,
wd

p


2
is the sum of l2-normalized wd

p, and
wm

p −

wm+1
p


1
penalizes the two continuous weighted vectors from the

same group to minimize their diversity.

3.4. Optimization algorithm

Since our objective function includes both similarity and group
regularization, we propose to use the iterative projected gradient
descent algorithm to solve this problem. Specifically, the objective
function is divided into similarity constraints and non-similarity
constraints, which is defined in Eqs. (4) and (5):

s(Wp) = min
Wp

1
2

M∑
m=1

∥amp − Am
p w

m
p ∥

2
2, (4)

m(Wp) = λ1∥Wp∥2,1 + λ2

M−1∑
k=1

wm
p −wm+1

p


1
, (5)

In specific projection gradient descent algorithm, we use two
steps to complete our optimization process in the first step in the
first n iterations. Specifically, the first step uses g(Wp) and γn to
represent g ′

(
Wn

p

)
in Wn

p ’s gradient and step length, respectively.
Then the first and second steps are denoted in Eqs. (6) and (7),
respectively.

Vn
p = Wn

p − γng ′
(
Wn

p

)
, (6)

Wn+1
p = argmin

1
∥Wp − Vn

p∥
2
2 +m(Wp). (7)
2
4

After the optimization of the similarity constraint, we optimize
the non-sparse constraint n(Wp) in Eq. (5) by cyclic calculation
of the proximal operators related to the Lasso group and Lasso
constraint [44,45]. To obtain our approximate solution faster, we
use accelerated gradient descent method to further accelerate the
above gradient. Specifically, our gradient descent calculation is
based on Snp rather than Wn

p .

Snp = Wn
p + αn

(
Wn

p −Wn−1
p

)
, (8)

Vn
p = Snp − γjg ′

(
Snp

)
, (9)

where αn is a pre-defined variable and g ′(Snp) and γp represent
g ′

(
W n

p

)
inW n

p’s gradient and step length, respectively. Finally, we
gain a new approximate solution via our optimization algorithm.
The specific solutions are listed in Algorithm 1.

3.5. Feature learning by SBi-LSTM

The basic LSTM cell has the input, output gate to get and
output the features after learning [46], which are defined as:

it = σ (Zxixt + Zhiht−1 + bi) , (10)

ot = σ (Zxoxt + Zhoht−1 + bo) , (11)

where it , ot represent the input gate, output gate, respectively.
Zxi and Zhi represent the weights parameters of input features xt
and the output features of former cell ht−1, bi and bo are the bias
of input gate and output gate, respectively. σ is the activation
function. The forget gate in basic LSTM cell is also significant,
which can be given as:

ft = σ
(
Zxf xt + Zhf ht−1 + bf

)
, (12)

here Zxf , Zhf are used to express the weight of xt and ht−1,
espectively, and bf is used to define the bias. Then the basic LSTM
ill use a special mechanism to select which unit to remember
nd forget, which are defined as:

t = tanh (Zxcxt + Zhcht−1 + bc) , (13)

ct = it ⊙ gt + ft ⊙ ct−1, (14)

here gt is the current state of neurons, ct is a long-term memory
nit controlled by it , gt , ft and ct−1, and ct−1 is the parameter
f the last unit, when the parameter is bigger than ct−1, the
ormer unit will be remembered, otherwise, it will be forgotten.
xc is the weight of input data xt , and Zhc is the weight of the
ast output neuron ht−1, ⊙ is the element-wise multiplication
erm. After interpreting the basic LSTM cell, we introduce the
idirectional LSTM, and D(■) is used to define a LSTM cell. The
orward and backward structure are both needed in the bidirec-
ional LSTM’s feature learning. Therefore, f⃗ and

←

b are used to
efine the forward and backward LSTM, respectively, which are
iven as follow:
→

ft = D
(
Zxf⃗ xt + Zdf⃗

−→

ft−1 +
→

bf

)
, (15)

←

t = D
(
Z
x
←

b
xt + Z

d
←

b

←−

ht−1 +
←

bd

)
, (16)

here Zxf⃗ and Zdf⃗ are the weights of the forward LSTM, Z
x
←

b
and

d
←

b
are the weights of the backward LSTM,

→

bf and
←

bd are the
iases of the forward and backward LSTM layers, respectively.
hen the final output of each direction is connected as the final
utput.

t = D
(
Zf⃗ y

→

ft + Z←
←

bt + by

)
, (17)
b y
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Fig. 3. The interpretation of self-attention model.

Finally, Zf⃗ y and Z←
b y

are the weights of the forward and back-

ward hidden state weights, respectively.

3.6. Self-attention based SBi-LSTM

Although SBi-LSTM has shown good results for disease detec-
tion [27], it is still feasible to be improved via attention. Therefore,
we explore a novel self-attention mechanism that can capture the
most representative part of the disease in response to a given
aspect, which is demonstrated in Fig. 3.

Specifically, we get the output feature yt from the previous
ection, and then we take the output feature yt as input, and
reate a query vector (Q = ytwQ), a value vector (V = ytwV),
key vector (K = ytwK) based on the input features, and then
e score the input through dot-product of Q and V. Next, we
ivide the score by 8

√
dk, so that the output is normalized by

he Softmax function, and the last column list adds up to 1. The
ext step is to multiply each value vector by Softmax. Finally, we
et the cumulative weighted vector via combining them together.
his produces output from the constrained attention layer at this
ocation. The self-attention can be expressed as:

Attention (Q,K,V) = Softmax
(

QKT

8
√
dk

)
V, (18)

here Q, K, V are the query vector, key vector and value vector,
espectively.
5

4. Experimental results

4.1. Experimental setup

In this paper, two public datasets, ADNI-2 and ADNI-3 are
used in the experiments. The details of the dataset are shown in
Table 1. All subjects have two time-point (baseline and year1) rs-
fMRI data with different scan parameters. In detail, the length of
time series is 140 and 197 in ADNI-2 and ADNI-3, respectively.
The subjects close their eyes in ADNI-2 while scan but open
their eyes in ADNI-3. The SLEPT toolbox is used for constructing
our BFCN. The Keras library with Tensorflow as backend is used
to extract features for detection. All the detection tasks have
three different scenarios: baseline, year1, and their fusion. We
can learn the relationship across different time points and study
them longitudinally. We use two constrained parameters in our
SGN to get the feature maps from multi-time points data, group-
constrained and similarity-constrained parameters, both are set
from 2−5 to 25. For the SBi-LSTM, we choose two-layer Bi-LSTM,
and the first layer has 128 cells while the second layer has 32
cells.

In the self-attention mechanism, we set dk to 32. In order
to facilitate training, we add a fully-connected (FC) layer and
softmax as the classifier. We choose the RMS optimizer [47] for
optimization and categorical cross entropy as the loss function. In
addition, the batch size is 20, epoch numbers are 200, the learning
rate is 10−3. To avoid the overfitting, the fuzz factor, rho, and the
learning rate decay are 10−8, 0.9, and 10−5, respectively.

4.2. Classification performance of our method

To evaluate the diagnosis performance of our model, four
quantitative metrics are used, namely accuracy (ACC), sensitivity
(SEN), specificity (SPEC), area under receiver operating charac-
teristic (ROC) curve (AUC). We also draw the ROC curves of the
ADNI-2 and ADNI-3 datasets combine together in Fig. 4. Since the
PC based BFCN get significant lower performance, we remove its
ROC curves in the figures. To represent the excellent performance
of our proposed method, we utilize the radar chart in Fig. 5 to
show the different performances among five different methods.

Due to the small dataset, the leave one out cross validation
(LOOCV) is used in the experiments. Supposing we have S data in
total, we use S−1 subjects for training and the left one for testing.
Then we loop the procedure for S times, and each subject is
tested. The regularization parameters with the best performance
are selected as the optimal parameters. S−1 classifiers are used to
classify the completely unknown test subject. A majority voting
strategy is used for the final classification decision. Each subject
in the dataset will be picked out for test and the process is
repeated S times, which computes the overall cross-validation
classification results [48]. To verify the efficacy of our model, we
set up the experiments of EMCI vs. NC. Also, we add the LMCI
vs. NC, and EMCI vs. LMCI tasks to verify the effectiveness of our
method.

Tables 2 and 3 show the experiment results of ADNI-2 and
ADNI-3 datasets. From the above two tables, we can verify the
effectiveness of the proposed method. First, we compare five
methods including SBi-LSTM, LSTM, SVM and MLP to verify the ef-
fectiveness of SSBi-LSTM, which are verified on ADNI-2 and ADNI-
3 datasets, we can find the proposed method always achieves the
best performance. In addition, we also verify the improvement
of multi-time data from the fusion of baseline and year1. From
the detection results of the EMCI vs. NC classification on ADNI-2,
we can find that year1 has made some improvement compared
with baseline, which are 86.11% and 84.53%, while Fusion gets
the performance of 87.50%, which achieved an improvement over
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Table 1
Demographic information of the subjects used in our study.
Time ADNI-2 dataset ADNI-3 dataset

NC EMCI LMCI NC EMCI LMCI

Baseline 33(15/18) 39(18/21) 30(19/11) 16(8/8) 25(13/12) 10(6/4)
Baseline 74.8 ± 6.43 71.0 ± 6.63 71.6 ± 8.34 76.4 ± 7.92 75.6 ± 6.96 76.9 ± 8.41
Year1 33(15/18) 39(18/21) 30(19/11) 16(8/8) 25(13/12) 10(6/4)
Year1 75.9 ± 6.40 72.0 ± 6.60 72.6 ± 8.34 77.2 ± 8.10 77.3 ± 7.07 77.5 ± 8.46
Table 2
Algorithm comparison of different scenarios on ADNI-2 dataset.
DATA BFCN Method LMCI vs. NC EMCI vs. LMCI EMCI vs. NC

ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE

Baseline

PC
SVM 50.52 50.87 48.56 52.53 50.78 50.85 48.67 33.56 50.00 50.08 56.41 42.42
MLP 50.80 50.67 49.40 52.28 50.78 50.58 56.41 26.67 50.61 50.69 46.15 45.45
SBi-LSTM 51.24 52.08 56.67 46.28 52.05 52.14 56.41 46.67 51.60 52.31 52.40 46.82
SSBI-LSTM 51.90 52.49 51.51 50.00 52.61 52.94 58.97 46.67 52.08 51.37 58.97 44.90

GCS
SVM 66.67 71.62 64.93 68.55 66.67 71.25 71.79 60.00 62.50 63.25 64.10 58.97
MLP 69.84 75.56 66.67 69.70 66.67 72.39 66.73 76.67 63.88 65.97 51.28 78.79
SBi-LSTM 74.60 81.62 81.82 66.67 71.04 75.38 67.61 76.67 65.28 71.72 66.67 69.70
SSBI-LSTM 72.14 80.10 83.33 72.74 72.46 75.47 74.36 73.38 68.05 76.61 69.23 69.70

SGN
SVM 75.36 78.25 73.92 81.44 75.36 82.22 74.36 76.67 75.00 80.81 85.74 67.46
MLP 79.36 78.28 83.33 75.76 79.71 82.74 87.18 70.00 75.00 86.48 89.74 57.58
SBi-LSTM 80.95 93.33 70.00 90.91 85.50 90.26 94.87 83.33 82.22 87.18 75.27 82.90
SSBI-LSTM 87.30 93.54 83.33 87.88 86.95 93.08 89.74 83.33 84.53 91.45 82.05 84.85

Year1

PC
SVM 50.80 50.84 47.78 54.55 50.78 47.11 56.41 26.67 51.38 50.65 46.15 57.58
MLP 50.80 51.07 40.00 54.55 51.42 47.26 53.85 33.33 51.22 50.89 64.10 27.27
SBi-LSTM 52.50 52.73 50.00 54.55 52.17 50.27 58.97 43.33 51.96 51.79 58.97 45.09
SSBI-LSTM 53.33 55.56 60.00 45.45 53.62 51.79 56.41 50.00 52.08 52.07 56.41 45.45

GCS
SVM 68.25 73.64 66.67 69.70 66.67 71.54 74.36 60.00 62.50 66.50 69.23 54.55
MLP 71.42 75.56 60.93 52.83 68.11 70.16 76.92 63.33 63.88 66.67 71.79 54.55
SBi-LSTM 74.60 81.61 73.33 75.76 72.46 77.52 79.49 66.67 66.67 71.72 74.36 57.58
SSBI-LSTM 76.19 86.33 66.67 78.79 73.91 78.38 79.49 66.67 68.05 74.51 69.23 66.67

SGN
SVM 77.78 75.85 72.92 81.44 76.81 85.47 76.92 76.67 75.00 80.34 76.92 72.72
MLP 77.78 79.49 80.00 76.67 79.71 88.97 74.36 86.67 76.38 89.51 89.74 60.61
SBi-LSTM 85.71 90.02 90.00 81.81 85.50 90.26 87.18 83.33 86.11 91.92 89.74 81.82
SSBI-LSTM 90.47 93.74 90.00 91.84 89.85 93.47 94.87 83.33 86.11 92.35 87.18 84.85

Fusion

PC
SVM 51.28 51.24 50.00 53.54 51.44 51.98 50.22 43.74 51.38 51.48 64.10 27.27
MLP 51.28 51.41 49.40 54.55 51.95 52.68 56.41 46.38 51.61 52.65 53.85 45.45
SBi-LSTM 55.56 53.54 53.33 57.58 54.04 54.55 58.97 43.33 53.47 53.15 56.41 48.48
SSBI-LSTM 57.66 59.70 56.67 63.64 57.61 55.56 61.54 53.33 55.56 56.41 64.10 49.19

GCS
SVM 69.84 73.64 70.00 67.70 68.11 73.42 74.36 60.00 63.88 69.85 56.41 72.72
MLP 71.42 81.31 60.93 58.55 69.56 76.75 71.79 60.00 65.28 72.56 51.28 78.79
SBi-LSTM 76.19 83.13 66.67 84.85 73.91 79.23 79.49 66.67 69.44 77.23 69.23 60.61
SSBI-LSTM 77.78 90.56 72.50 91.84 75.46 81.45 84.62 63.33 72.22 83.99 79.49 63.64

SGN
SVM 79.36 81.31 90.00 57.58 79.71 88.97 74.36 86.67 76.38 84.85 79.49 75.75
MLP 80.95 89.90 73.33 87.88 84.05 91.79 87.18 80.00 79.17 86.40 79.49 78.79
SBi-LSTM 87.30 93.54 90.00 84.84 89.85 94.02 83.33 97.44 86.11 90.37 87.18 84.85
SSBI-LSTM 92.06 94.75 86.67 96.97 91.30 95.47 94.87 86.67 87.50 92.61 87.18 87.88
Fig. 4. The ROC curves of different methods on the ADNI-2&3dataset.
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Table 3
Algorithm comparison of different scenarios on ADNI-3 dataset.
Data BFCN Method LMCI vs. NC EMCI vs. LMCI EMCI vs. NC

ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE

Baseline

PC
SVM 51.11 51.11 53.33 47.22 50.85 51.08 51.02 50.23 50.90 50.25 47.62 53.89
MLP 50.85 52.32 52.00 48.48 50.85 51.28 50.33 52.94 51.22 52.74 53.27 48.26
SBi-LSTM 57.69 55.56 58.77 56.73 51.42 53.20 55.56 50.69 52.34 53.24 52.00 52.86
SSBi-LSTM 57.69 58.36 56.58 59.21 53.71 56.40 60.00 54.00 53.25 58.74 52.62 55.35

GCS
SVM 66.67 71.62 64.93 68.55 66.67 71.25 71.79 60.00 62.50 63.25 64.10 58.97
MLP 69.84 75.56 66.67 69.70 65.85 64.20 71.79 50.00 63.88 65.97 51.28 78.79
SBi-LSTM 74.60 81.62 81.82 66.67 71.04 75.38 67.61 76.67 70.73 71.25 76.00 62.50
SSBi-LSTM 72.14 80.10 83.33 72.74 72.46 75.47 74.36 73.38 73.17 74.50 72.00 75.00

SGN
SVM 70.73 73.85 33.33 41.11 74.49 41.11 73.85 75.33 67.22 70.00 68.48 63.48
MLP 76.53 81.25 78.75 70.00 78.55 84.67 71.25 81.79 68.11 71.54 76.92 63.33
SBi-LSTM 84.61 86.88 81.25 90.00 82.86 90.40 84.00 80.00 78.04 84.00 80.00 75.00
SSBi-LSTM 88.46 87.50 87.50 80.00 82.86 87.20 84.00 80.00 82.93 85.32 84.00 87.50

Year1

PC
SVM 51.68 51.27 49.87 53.33 51.57 51.65 52.60 50.68 51.78 50.79 52.38 48.78
MLP 51.68 54.95 48.33 54.55 51.22 52.24 48.89 56.27 52.34 52.23 52.38 49.00
SBi-LSTM 57.69 60.00 56.00 54.17 54.29 53.80 56.60 52.37 53.22 56.81 58.00 49.30
SSBi-LSTM 57.69 61.00 58.46 56.00 54.29 55.40 60.00 50.00 56.09 59.62 60.68 52.08

GCS
SVM 68.25 73.64 66.67 69.70 66.67 71.54 74.36 60.00 62.50 66.50 69.23 54.55
MLP 71.42 75.56 60.93 52.83 68.57 67.20 74.50 64.00 63.88 66.67 71.79 54.55
SBi-LSTM 74.60 81.61 73.33 75.76 72.46 77.52 79.49 66.67 70.73 74.25 72.00 68.75
SSBi-LSTM 76.19 86.33 66.67 78.79 73.91 78.38 79.49 66.67 73.17 78.75 76.00 68.75

SGN
SVM 71.11 73.85 73.33 67.22 76.00 78.48 73.48 80.00 70.68 80.00 78.48 63.33
MLP 79.23 74.35 68.75 70.00 78.55 80.00 84.00 60.00 70.73 80.75 68.00 75.00
SBi-LSTM 84.61 88.12 87.50 80.00 85.71 92.80 88.00 80.00 82.92 86.38 88.00 75.00
SSBi-LSTM 88.46 89.38 81.25 80.00 88.57 91.20 92.00 80.00 85.36 88.25 92.00 75.00

Fusion

PC
SVM 51.49 52.23 53.85 49.33 52.71 53.00 54.00 50.00 51.78 50.69 56.25 48.27
MLP 52.85 53.65 50.22 53.74 52.71 53.28 52.27 52.96 52.34 53.19 57.14 49.21
SBi-LSTM 57.69 58.75 55.67 58.33 57.14 60.80 60.00 53.56 56.09 58.75 64.00 52.00
SSBi-LSTM 61.53 67.32 57.50 68.75 60.00 62.90 64.00 60.00 60.97 60.25 68.00 55.09

GCS
SVM 69.84 73.64 70.00 67.70 68.11 73.42 74.36 60.00 63.88 69.85 56.41 72.72
MLP 71.42 81.31 60.93 58.55 71.42 80.00 71.79 70.00 65.28 72.56 51.28 78.79
SBi-LSTM 76.19 83.13 66.67 84.85 73.91 79.23 79.49 66.67 73.17 79.50 80.00 62.50
SSBi-LSTM 77.78 90.56 72.50 91.84 75.46 81.45 84.62 63.33 75.60 80.00 80.00 68.75

SGN
SVM 80.73 80.75 80.00 75.00 72.50 91.84 75.46 81.45 70.62 83.33 72.22 73.99
MLP 83.07 83.75 81.25 80.00 71.43 75.20 76.00 60.00 73.17 77.00 84.00 56.25
SBi-LSTM 88.46 87.35 87.50 90.00 88.57 93.60 88.00 90.00 85.36 95.50 84.00 87.50
SSBi-LSTM 92.30 92.30 93.75 90.00 91.42 96.40 96.00 80.00 87.80 93.25 84.00 87.50
Fig. 5. The ROC curves of different methods on the ADNI-2&3dataset.
aseline and year1. The same findings can be found for the
erformance of the other two detection tasks of LMCI vs. NC and
MCI vs. LMCI. Then, we also demonstrate the good performance
f our longitudinal study on ADNI-3, which can be seen in Table 3.
n addition, we also show the results on the combination of ADNI-
and ADNI-3 (hereinafter to be referred as ADNI-2&3 dataset)
ataset in Table 4, to show the effectiveness of the proposed
ethod. Compared with the above two tables, the results on

he combined dataset ADNI-2&3 decrease relatively, comparing
o the results on the two datasets individually, which are from
7.50% to 86.11%, 91.30% to 89.42% and 92.06% to 91.42% in the
7

three detection tasks of EMCI vs. NC, EMCI vs. LMCI and LMCI
vs. NC, respectively. However, this can be expected because of
the differences existed in the scanning time series length and
scanning mode between the two datasets.

5. Discussion

5.1. Influence of the SBi-LSTM depth

To evaluate the influence on the depth of SBi-LSTM, we test
our model with varied number of layers while fixing the other
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Fig. 6. The influence of LSTM’s layer.

arameters. Namely, we test the following models: baseline of
layer SBi-LSTM (B 1layer), year1 of 1 layer SBi-LSTM (Y 1layer),

usion of 1 layer SBi-LSTM (F 1layer), baseline of 2 layer SBi-LSTM
B 2layer), year1 of 2 layer SBi-LSTM (Y 2layer), fusion of 2 layer
Bi-LSTM (F 2layer), and baseline of 3 layer SBi-LSTM (B 3layer),
ear1 of 3 layer SBi-LSTM (Y 3layer), fusion of 3 layer SBi-LSTM (F
layer), we use the same SGN output feature maps to test these
onfigurations. Then we analyze the significance of the obtained
esults and compare them in Fig. 6. The final results show that
e get better results when the SBi-LSTM has only 2 layers. The
esults are consistent with Wang et al. [24] since the LSTM’s layer
an improve the detection results. Only one layer is too shallow to
iscover representative information for detection, while too many
ayers may omit discriminative features during feature learning.

.2. Influence of the similarity and sparse constraint

Regarding the BFCN, we study the influence of the sparse
nd similarity constraint. Specially, both parameters are set from
−5 to 25. Then we compare different methods with all the
ossible combinations of the two parameters in Fig. 6. Instead
f applying LOOCV that takes too much time, we choose 10-
old cross-validation to perform the comparison. From Fig. 7,
e can find that the optimal similarity and sparsity parameter
8

combination is (2−4, 2−3) for the task of EMCI vs. NC classification,
while achieving the best accuracy of 86.11%.

The optimal parameters for classification on EMCI vs. NC and
EMCI vs. LMCI are (2−3, 2−3) and (2−3, 2−4), while the correspond-
ing best results are 91.42% and 89.42%. We can conclude that: (1)
When the similarity constraint and sparse constraint parameters
are larger than 1, the accuracy does not improve greatly; (2) The
accuracy improves greatly when the constrained parameters are
smaller than 1. The experiment results also show that the pattern
of decline can already be seen even the high detection results are
achieved. Specifically, the similarity parameter is set to 0 in the
GCS method.

5.3. Influence of the batch-size

We conduct experiments on different datasets and batch-sizes
to understand their impact on our method. As can be seen from
Table 5, for the same dataset, with the increase of batch-size, the
accuracy rate tends to increase, but it will fluctuate up and down.
The results on the ADNI-3 dataset are slightly worse than those
on ADNI-2, which should be due to the slightly larger size of the
ADNI-2 dataset.

5.4. Visualization analysis

We visualize the t-SNE features of the final outputs of LSTM,
SBi-LSTM, and SSBi-LSTM in Fig. 8, which demonstrates that the
proposed method can learn more discriminative features than the
other two methods, especially for the classification of EMCI and
NC. It is well-known that the brain is the central hub responsible
for the daily activities, and different brain regions correspond
to different tasks, not all of them are closely associated with
MCI. Therefore, we use our proposed approach to detect these
associated ROIs to find abnormal brain regions. Specifically, we
use a brain region that blocks a network of functional connections
to systematically eliminate other ROIs. We put the BFCN to zeros
associated with these ROIs if these brain region connections to
systematically eliminate other ROIs. We put the BFCN to zeros
associated with these ROIs if these brain region connections to
systematically eliminate other ROIs. We put the BFCN to zeros
associated with these ROIs, and if these brain regions have sig-
nificant influence on area that is related to EMCI, the correct
class prediction will significantly drop. We use the whole brain
as a control group. We then shield 90 brain regions in turn and
get 90 classification results after shielding. We also choose the
top 10 brain regions, which have the greatest impacts on the
diagnosis of LMCI and EMCI, respectively. Fig. 9 shows the sagittal
plane visualization of the most important brain region we have
selected. Also, we draw the BFCN of the top ten ROIs in Fig. 10.

From the above results, we conclude that the top ten ROIs
with the greatest impact on the detections of EMCI are Lingual
gyrus left, Temporal pole, middle temporal gyrus left, Inferior
frontal gyrus, triangular part left, Middle occipital gyrus right,
Middle frontal gyrus left, Angular gyrus, Thalamus left, Middle
frontal gyrus left, Angular gyrus right, Superior occipital gyrus
right, and Posterior cingulate gyrus left. The top ten ROIs with the
greatest impact on the detections of LMCI are Gyrus rectus left,
Postcentral gyrus right, Superior temporal gyrus left, Gyrus rectus
right, Orbital part, Gyrus rectus, Middle frontal gyrus, Orbital
part right, Posterior cingulate gyrus left, Posterior cingulate gyrus
right, Superior temporal gyrus right, Angular gyrus left, and Mid-
dle occipital gyrus right. These brain regions have been proved to
have high correlations with EMCI and LMCI [4]. In addition, we
also illustrate the top ten brain region connectivity in Fig. 11.
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Table 4
Algorithm comparison of different scenarios on ADNI-2&3 dataset.
DATA BFCN Method LMCI vs. NC EMCI vs. LMCI EMCI vs. NC

ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE

Baseline

PC
SVM 51.68 51.92 49.17 51.70 51.92 51.37 55.76 48.61 50.44 50.69 57.81 46.26
MLP 51.42 52.14 55.00 46.94 52.14 50.98 50.20 45.85 51.39 53.99 62.50 38.78
SBi-LSTM 54.02 54.03 63.27 47.50 52.09 53.68 46.94 56.36 54.77 52.87 55.29 53.08
SSBi-LSTM 53.87 57.76 55.00 51.65 52.81 54.77 42.68 61.82 55.45 53.99 64.06 50.77

SGC
SVM 70.00 72.70 71.79 69.39 70.19 78.59 62.25 78.79 70.83 72.26 60.93 58.55
MLP 71.42 75.56 62.50 77.51 72.57 81.37 69.39 80.00 70.83 69.93 67.69 73.47
SBi-LSTM 74.28 82.19 68.77 77.69 72.85 81.25 77.65 67.64 71.16 80.00 69.23 73.47
SSBi-LSTM 74.28 80.10 75.00 74.76 72.85 84.90 73.74 70.67 72.91 80.13 77.50 55.83

SGN
SVM 75.00 79.14 77.55 72.50 75.00 82.56 73.74 80.68 73.93 77.74 67.19 81.63
MLP 75.00 81.38 79.59 70.00 77.85 82.75 80.00 73.00 75.00 80.36 67.19 83.67
SBi-LSTM 85.17 90.41 89.13 83.72 84.61 92.50 85.00 84.37 80.56 84.06 85.71 75.00
SSBi-LSTM 87.14 94.54 89.13 90.70 85.71 91.95 89.06 82.50 82.63 90.69 87.50 70.83

Year1

PC
SVM 51.68 52.50 47.50 55.10 51.92 53.68 53.94 46.94 51.32 52.65 53.67 48.69
MLP 52.85 53.15 57.50 47.06 52.62 50.71 58.37 42.73 51.68 54.38 54.67 47.96
SBi-LSTM 55.13 54.49 50.00 59.18 54.90 53.87 44.90 63.64 55.75 56.92 62.50 53.09
SSBi-LSTM 56.38 54.85 62.54 52.00 54.90 57.66 53.06 56.36 56.33 57.08 59.38 54.75

SGC
SVM 71.28 76.86 62.50 78.79 71.15 79.11 60.93 58.55 71.16 76.37 66.67 75.00
MLP 72.14 76.73 65.00 78.79 73.57 81.41 70.76 77.55 71.92 75.98 74.36 67.33
SBi-LSTM 75.71 84.23 71.55 79.67 75.43 84.23 76.92 71.43 75.43 80.13 76.92 71.43
SSBi-LSTM 78.68 86.33 77.35 80.67 78.57 86.09 76.72 81.25 76.31 86.88 78.13 57.14

SGN
SVM 78.46 82.75 75.43 83.33 75.42 83.38 70.42 80.68 74.89 80.55 70.31 80.67
MLP 79.28 80.15 69.38 88.98 77.85 87.12 71.43 87.27 77.14 82.94 79.69 79.59
SBi-LSTM 86.07 94.44 85.68 87.50 86.42 94.24 89.06 85.00 81.57 87.40 76.92 87.75
SSBi-LSTM 89.28 93.42 91.30 88.37 87.85 95.96 87.96 87.50 84.53 90.91 84.38 81.63

Fusion

PC
SVM 52.80 53.99 46.67 54.42 52.88 52.78 49.66 58.82 52.21 53.62 60.94 47.62
MLP 52.85 54.08 59.18 40.00 53.00 52.21 48.24 55.64 52.08 52.07 56.41 45.45
SBi-LSTM 55.13 54.49 50.00 59.18 56.36 57.22 51.02 60.00 57.72 58.07 58.65 57.14
SSBi-LSTM 60.91 58.01 55.00 65.39 56.36 58.56 61.82 51.02 58.33 59.28 59.38 57.14

SGC
SVM 72.14 78.52 77.55 69.70 72.31 81.15 66.73 78.61 72.91 81.95 68.25 78.79
MLP 74.28 83.88 70.00 74.68 75.00 84.27 69.23 75.00 72.91 80.01 76.56 71.43
SBi-LSTM 77.86 88.11 72.50 81.63 76.83 84.60 69.23 81.63 76.83 88.17 69.23 81.63
SSBi-LSTM 80.85 90.50 74.40 87.32 79.16 89.09 75.00 87.76 76.83 88.62 78.12 63.27

SGN
SVM 77.86 86.42 71.43 87.27 77.14 83.42 79.69 75.59 76.83 85.71 67.50 74.37
MLP 82.85 88.57 69.57 92.30 82.85 89.53 76.92 90.00 80.00 86.73 73.88 91.83
SBi-LSTM 88.57 94.69 89.13 88.37 87.85 95.70 92.19 82.50 84.53 92.64 81.25 93.88
SSBi-LSTM 91.42 96.43 86.96 97.67 89.42 97.59 92.19 87.50 86.11 93.90 89.06 77.55
Fig. 7. The influence of sparse and similarity constrained parameters in ADNI-2&3 dataset.
5.5. Comparison with related works

Apart from comparing the proposed model with different pa-
rameters, we also compare it with several state-of-the-art meth-
ods, and we report the results in Table 6. Specifically, we present
the number of subjects, method of BFCN construction, classifier
and obtained results, where S denotes single time-point and M
9

denotes multiple time-points. We can draw a conclusion that our
model achieves the best result in terms of all metrics and the
longitudinal data can improve the detect results of EMCI. With
the better prediction performance, our proposed method also
provides an effective way to detect other brain diseases through
BFCN construction and longitudinal analysis.
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Fig. 8. The t-SNE visualization the last layer in our model of different detection
asks.

Fig. 9. The top 10 brain regions of different classification tasks.

6. Conclusion

In this paper, we propose a novel deep learning model to
etect EMCI from longitudinal data, which comprises a SGN for
ffective BFCN construction, a SBi-LSTM network for discrim-
native feature learning and longitudinal analysis, and a self-
ttention module for high-level feature extraction from two time-
oints. We test the model on two public datasets individually
nd jointly. The experimental results show that our model out-
erforms several state-of-the-art methods. However, several is-
ues need to be improved in our future study. First, only LSTM
10
Fig. 10. Key brain connective change over different time points.

Table 5
Performance comparison of different batch-sizes (%).
Dataset Dataset size Batch-size ACC AUC SEN SPE

ADNI-2 102 2 86.3 92.2 83.03 86.17
ADNI-2 102 4 88.42 92.45 84.31 88.24
ADNI-2 102 8 87.11 92.81 85.89 89.38
ADNI-2 102 16 90.86 93.06 88.56 90.72
ADNI-2 102 32 89.28 93.37 90.22 92.84
ADNI-2 102 64 91.05 93.94 89.73 95.03
ADNI-2 102 128 92.18 94.75 89.16 93.72
ADNI-3 51 2 86.11 88.61 85.48 86.31
ADNI-3 51 4 87.24 89.03 86.26 88.28
ADNI-3 51 8 87.56 89.74 88.3 89.64
ADNI-3 51 16 88.67 90.18 89.71 90.63
ADNI-3 51 32 90.48 90.84 90.32 91.49
ADNI-3 51 64 89.96 91.15 93.75 92.75
ADNI-3 51 128 91.35 92.3 91.03 91.62

Table 6
Performance comparison of different methods under various scenarios (%).
Method Subject Time BFCN Classifier Acc

Guo et al. [18] 33 EMCI+28 NC S PC SVM 72.10
Guo et al. [18] 32 LMCI+28 NC S PC SVM 78.63
Wee et al. [14] 29 EMCI+30 NC S GCS SVM 79.66
Yang et al. [5] 18 LMCI+29 NC M FSN SVM 87.23
Yang et al. [5] 29 EMCI+18 LMCI M FSN SVM 80.35
Yang et al. [5] 29 EMCI+29 NC M FSN SVM 82.76
Proposed 40 LMCI+49 NC M SGN softmax 91.42
Proposed 64 EMCI+40 LMCI M SGN softmax 89.42
Proposed 64 EMCI+49 NC M SGN softmax 86.11

is applied to fuse the longitudinal data in our current study,
other deep fusion methods will be introduced to further im-
prove the overall performance. Second, the experiments are con-
ducted on two datasets independently and jointly. However, a
comprehensive multi-center study with more data varieties is
needed to verify the robustness of the proposed method, in
which the data from each center is collected with different scan
parameters. Third, the datasets used in the experiments are rela-
tively small, larger datasets should be introduced to validate the
generalization ability of the proposed method.
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Fig. 11. The top 10 brain regions and the corresponding connective network of different classification tasks.
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